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FORTRAN IV SUBROUTINES FOR COUPLING COEFFICIENTS AND 

MATRIX ELEMENTS IN THE QUANTUM MECHANICAL 

THEORY OF ANGULAR  MOMENTUM 

by William F. Ford  and  Richard C. Braley 

Lewis  Research  Center 

SUMMARY 

Subroutines  written  in FORTRAN IV are presented  for  calculating  Clebsch-Gordan 
coefficients,  Racah  coefficients, 9- j coefficients,  reduced  rotation  matrix  elements,  and 
other  related  quantities.  Considerable  attention is paid  to  matters of speed  and  accura- 
cy,  and  the  coding is designed  to  resemble  the  corresponding  mathematical  equations as 
closely as possible. 

INTRODUCTION 

The  investigation of quantum  mechanical  systems of two or  more  particles  generally 
involves the coupling of the  individual  angular  momenta  to  some  total  angular  momentum. 
The  study of this process  leads  quite  naturally  to the Clebsch-Gordan  coefficients,  which 
describe  the  coupling of a pair of particles,  and  to  the  Racah  and  other  coefficients, 
which  describe the transformation  from  one coupling scheme to another. 

Extensive  tabulations of such  quantities  have  been  available  for  many  years,  and 
these are very  useful  for  calculations which  one  might  undertake  with  the  aid of a desk 
calculator.  With  the  advent of high-speed  electronic  computers,  however,  the  use of ex- 
tensive  tabulations  becomes  more of a hindrance  than a help,  and  one is faced  with  the 
need  to  generate  the  relevant  coefficients as and  when  they are required.  This is partic- 
ularly  true of the  reduced  matrix  elements of the  rotation  operator,  which  occur  in  many 
applications,  because  they  depend  on a continuous  variable. 

A general-purpose  routine  designed  to  furnish  some  quantity  in  widespread  use,  say 
for  example, a Clebsch-Gordan  coefficient,  ought  to  satisfy  certain  requirements. It 
should  be  accurate, of course,  and fast; in  addition it must  be  easy  to  use  and  designed 
in  such a way that the  user  can  modify it readily  to s u i t  a particular  application. 



A common  problem  arising  in  the  evaluation of the  Ciebsch-Gordan  and  Racah  coef- 
ficients  and  rotation  matrix  elements is the  appearance of large  factorials  in  the  numer- 
ators  and  denominators of the  terms  in  the series. Direct  use of the  factorials  may  lead 
to roundoff or  overflow,  while  attempts  to  avoid  the  problem by introducing  binomial  co- 
efficients are clumsy  and  time-consuming.  The  meth9d  used  here  involves  logarithms 
of the  various  factorials, which are precalculated  and  stored  in  an  array;  the  exponent- 
iation is not performed  until  cancellation  occurs via subtraction of the  logarithms. 

In the  following  sections we present  techniques  for  computing  the  Clebsch-Gordan 
coefficient,  the  Racah  coefficient,  the  reduced  rotation  matrix  element,  and  the  9-j  co- 
efficient. FORTRAN IV subroutines  which  employ  these  techniques are given  in  the  ap- 
pendices.  The  subroutine  for  evaluating  the  9-j  coefficient  also  contains  an  entry  for 
computing  the  reduced  matrix  element of the  spin-angle  tensor  product. 

Within each  subroutine  the  coding has been  designed  to  resemble  the  actual  equa. 
tions, so that a potential  user  can  easily  make  modifications if desired. In order  to 
maintain  this  close  correspondence  and at the  same  time  produce  efficient  coding,  the 
basic  equations  have  been  rearranged  slightly  from  the  forms  given by Brink  and  Satchler 
(ref. 1). The  reader  should  also  note that the  same  symbol  may be used  to  represent 
different  quantities  in  different  sections,  and so  the  definition  given  in  one  section  ap- 
plies  to  that  section only. 

CLEBSCH-GORDAN COEFFICIENTS 

The  expression  given by Brink  and  Satchler  (ref. 1, p. 34) for  the  Clebsch-Gordan 
coefficient  may  be  written 

where 

C = A(jlj2J) [(j, - ml)! (j, +- m2)! (j, + ml)! (j, - m2)! (J + M)! (J - M)!] 1/2 

and 

x (J - j l  - m1 +n)!n!J 
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Here  the  symbol A, which wil l  appear  in  the next  section as well, stands  for a function 
defined  by 

A(abc) [(a + b - c)! (b + c - a)!(c + a  - b)!]l/, : [(a + b + c + l)!] 1/2 

The  appearance of factorials  in  the  numerators  and  denominators of the above  ex- 
pressions  makes it undesirable  to  evaluate  them as written.  Our  philosophy  here  and  in 
the  remaining  sections will be  to  avoid  the  direct use of factorials by means of loga- 
rithms,  and  to  arrange  matters so that  the  first  term  in  the  series  has  the  value unity. 
Thus,  to  evaluate C,  we make  use of the  fact that 

to write 
9 

P = X(Ni) - X(Nlo) 
1= 1 

where X(N) log r(N) and 

N1 = 1 + (j, + j, - J) Ns = 1 + (j ,  + ml) 

N, = 1 +(j, + J - j,) N7 = 1 + (j, - m,) 

N3 = 1 + (J + j l  - j,) N8 = 1 +(J  +M) 

N4 = 1 + ( j l  - ml) Ng 1 + (J - M) 

N5 = 1 + (j, + m,) N10 = 1 +(jl + j ,  + J  +1) 

The Ni a r e  always integers,  and so C  vanishes if any Ni is smaller than unity; this 
condition is equivalent  to all the usual triangle  inequalities and also the z-component 
inequalities  for  the  Clebsch-Gordan  coefficient.  Because X(N) is needed only for  integer 
values of N, it can  be  conveniently  precalculated  and stored as an   a r r ay  labeled X. 

To  evaluate G, we write 
"2 

G = x G ( n )  = G(nl) H(n) 
n n=n 1 
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where H(nl) = 1, 

H(n) = H(n - 1) 
G(n - 1) 

and n1 (n2) is the  minimum  (maximum)  value  attained by n. The  recursion  relation  for 
H(n) reduces  to 

(n - q ( "  - K2) (n - K3) 
H(n) = H(n - 1) 

(n - K4)(n - Kg)n 

where 

K1 = N1 

K2 = N4 

K3 = N5 

It is easy  to  verify  that n2 is the  smallest of (K1,K2,K3) less  one,  and n1 the  largest 
of (0, K4, K5). 

using  the  same  technique as for C: 
The first t e rm G(nl),  which has been  factored  out of the  series,  can  be  evaluated 

6 

G(nl) = dE1 (-1) exp(-Q) Q = X(KI) 
"1 

i= 1 
where 

f 

K1 = K1 - nl K4 = n1 i- 1 - K4 

K i  = K2 - n1 Kg = n1 + 1 - Kg 

K i  = K3 - n1 K; = n l  + 1 

The FORTRAN IV subroutine CG which  evaluates  the  Clebsch-Gordan  coefficient by 
means of these  equations is presented  in  appendix A. The coding has been  arranged so  
as to  closely  resemble  the  actual  equations.  The  subroutine is written as a function 
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subprogram, so  that a typical  call  might be 

SUM = SUM +ALPHA * CG(J1, M I ,  52, M2, J, M) 

The  arguments J1, . . . , M in  the  calling  vector are to be supplied as floating point 
variables, so that either  integer o r  half-integer  values  may  be  easily  handled. 

Provision  has  also  been  made  for  evaluation of the  Wigner  3-j  coefficient,  which is 
related  to  the  Clebsch-Gordan  coefficient by 

A  typical  call  for  this  function  might  be 

S U M  = S U M  +ALPHA * THREEJ(J1, 52, J, M1, M2,   M) 

RACAH COEFFICIENTS 

W(abcd;  ef) = CG 

where 

C = A(abe)  A(acf) A(bdf) A(cde) 

and 

G = C ( - l ) n ( a + b + c + d + l - n ) !  [ ( a + b - e - n ) ! ( a + c - f - n ) ! ( b + d - f - n ) !  
n 

x (c + d  - e - n)!(e + f  - a - d  +n)!(e + f  - b - c +n)!n!]-’ 

5 



4 
p = F(Ji) + X(Ki) + X(Li) - X(Mi)] 

i d  

where X(N) = log r(N) and 

J1 = 1 + ( a  + b  - e) 

K1 = 1 + ( b  + e  - a )  

L1 = 1 + ( e  + a  - b) 

M1 = J1 + K 1  + L 1 -  1 

J2 = 1 + ( a   + C  - f) 

K2 = 1 + ( c  + f  - a) 

L2 = 1 + ( f  + a  - c) 

M2 = J2  + K2 + L2 - 1 

J3 = 1 + ( b   + d  - f )  J4 = 1 + ( c   + d  - e) 

K3 = 1 + ( d  + f  - b)  K4 = 1 + ( d  + e  - c) 

L3 = 1 + ( f   + b  - d) L4 = 1 + ( e   + c  - d) 

M3 = J3  + K3 + L3 - 1 M4 = J4 + K4 + L4 - 1 

All of the  quantities Ji, Ki, Li,  and Mi are integers,  and  the usua l  triangle  inequal- 
ities on the  arguments of the  Racah  coefficient are equivalent  to  requiring  that all these 
integers  (except  for Mi) be  greater  than  zero. 

To evaluate  G we proceed as for  the  Clebsch-Gordan  coefficient,  writing 

G =E G(n) = G(nl) H(n) 
n  n=n, 

with  H(nl) = 1 as before. In this  case  the  recursion  relation  for H(n) reduces  to 
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I '  

where 

Jg  = J1 - L2 

Jg = J1 - L3 

J 7  = J1 +Mq - 1 

The first te rm G(nl) can  be  written 

7 
Q = X(JI) - X(JL) 

i= l  

where 

J1 = J1 - n1 J5 = n l  + 1 - J5 

I * 
J2 = J2 - n1 J ' - n  6 -  1 + 1 - J 6  

1 

J3 = J3 - n1 J7 = n1 + 1 

J4 = J4 - n1 J8 = J7 - n1 

The FORTRAN IV subroutine RACAH which  evaluates  the  Racah  coefficient by means 
of these  equations is presented  in  appendix B. The  coding  has  been  arranged s o  as to 
closely  resemble  the  actual  equations.  The  subroutine is written as a function  subpro- 
gram,  so  that a typical  call  might  be 

SUM = SUM +ALPHA * RACAH(A, B, C, D, E ,  F) 

The  arguments  A, . . . , F in  the  calling  vector a r e  to  be  supplied as floating point var- 
iables, so  that  either  integer o r  half-integer  values  may  be  easily  handled. 

Provision  has  also  been  made  for  evaluation of the  normalized  Racah  coefficient, o r  
U-coefficient, which is related to the  Racah  coefficient by 



might  be 

SUM =SUM +ALPHA * UCOEF(A, B, C ,  D, E,  F) 

There is also  an  entry  for  evaluation of the  Wigner 6-j coefficient,  which is some- 
times used  in  preference  to  the  Racah  coefficient. .It is related  to  the  Racah  coefficient 

by 

{ def 1 = (-l)a+b+d+eW(abed;  cf) 

A  typical  call  for  this  function  might  be 

SUM =SUM +ALPHA  *SIXJ(A, B, C,  D, E, F) 

REDUCED ROTATION MATRIX ELEMENTS 

The  expression  given by Brink  and  Satchler (ref. 1, p. 22) for  the  elements of the 
reduced  rotation  matrix  may  be  written 

and 

n 

X (m2 - ml  + n)! n!] -1 

As  in  the  preceding  sections, C can  be  evaluated  more  conveniently  and  accurately  in 
the  form 
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where X(N) = log r(N) and 

N1 = 1 + ( j  + ml) N3 = 1 + ( j  - ml) 

N2 = 1 + ( j  - m2) N4 = 1 + (j  + m2) 

As before, C vanishes if any of the  integers Ni is less than  unity. 
Before  evaluating G we must  discuss  its  dependence on the  rotation  angle 8. Al- 

though G is periodic  in 0 with a period of 477 for half-integral j and a period of 277 
for integral j ,  in  most  applications  the  range of 8 is limited  to 0 5 e 5 8 .  We will 
take  this  to be the  standard  case,  and  discuss  the  exceptions  later. 

Because  the  expression  for G is a power series  in  tan - 8 , it is desirable  to ar- 1 
n 

range  matters so that 8 5 - 7~. When e is larger  than - n, this  can  be  accomplished 1 1 '  
2 2 

by means of the  relation 

We then  write 

n=n 

with H(nl) = 1 as before.  In this case  the  recursion  relation  for H(n) reduces  to 

2 (n - K1)(n - K2) 
H(n) = - H(n - 1) tan - 8 ( ) (n - K3)n 

~~ 

where K1 = N1, K2 = N2, and K3 = N1 - N4' 

The  f irst   term G(nl) can  be  written 

G(nl) = (cos e)21 (tan 8) N n  (- 1) lexp(-Q) 

9 
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where N = 2nl - (ml - m2)  and 

N1 = K1 - n1 N3 = n1 + 1 - K3 

1 1 
N2 = K2 - n1 N4 = n1 + 1 

Finally, let us  consider  the  nonstandard case, where 8 is negative or  larger  than 
T. For negative  angles we may  use  the  relation 

For  positive  angles we may  immediately  reduce 8 to its value  modulo 4s. If 0 is 
then  larger  than 277, we may use 

and if 8 is then  larger  than T, we may use 

The FORTRAN IV subroutine D J "  which evaluates  the  reduced  rotation  matrix 
element by means of these  equations is presented  in  appendix C. The coding has been 
arranged so as to  closely  resemble  the  actual  equations.  The  subroutine is written as a 
function  subprogram, so that a typical  call  might  be 

SUM = SUM +ALPHA * DJ"(M1, M2, J, THETA) 

The  arguments M1, . . THETA  in the  calling  vector are to be supplied as floating 
point variables, so that  either  integer or half-integer  values of the  angular  mementum 
quantum numbers  may  be  easily  handled. 
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9-j COEFFICZENTS AND RELATED QUANTITIES 

The  expression  given by Brink  and  Satchler (ref. 1, p. 46) for  evaluating  the  Wigner 
9-j  coefficient  in t e rms  of Racah  coefficients  may  be  written 

The  summation is restricted by triangular  inequalities  such  that  the  quantity 

does not vanish. By specializing  one or another of the  arguments it is possible  to  derive 
simpler  expressions  for  the 9-j coefficient, but in  general  this will  not be  attempted 
here. 

The  case  where s1 = s2 = 1/2 occurs s o  frequently,  however,  that it is deserving 
of special  attention. Only  two values of S a r e  possible  here,  namely S = 0 and S = 1.  
When S = 0 the 9-j coefficient  may  be  obtained  directly  from  the  above series, since 
only  one term  survives;  the result may  be  simplified  using 

W(abc0;  ef) = bPce 

/(2e + 1)(2f + 1) 

The  general  relation 

may  then  be  applied  to  obtain  the  9-j  coefficient  with S = 1 in t e rms  
ficient  with S = 0. The f ina l  result  may  be put  in the  compact  form 

of the 9-j coef- 

11 



where 

C = )/2(2J + 1) ~ 

D = 3(4J + 2)W - - LJ; 1E (11 ) 
E = - ( L  + J  +6LJ)  1 

2 

The  9-j  coefficients  play  an  important  part  in  evaluating  the  matrix  elements of 
products of tensor  operators.  A  case of special  interest  involves  the  spin-angle  tensors 

defined by M 

Here is a spherical  harmonic  and # is a rank-S  tensor  in  the  spin-space of a 
particle  with  intrinsic  spin. For spin-1/2  particles a. is the unit operator  and o1 is 
twice  the  spin  operator,  and  the  reduced  matrix  element  turns out to  be  expressible as 

Here a further  simplification is possible  because of the  appearance of the  reduced  matrix 
element of YL, which is known to  vanish  unless 2 + 1 + L is even.  After  some  alge- 
bra  the  result  may  be  written 

12 
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where 

x - x2 
G~~~ = 

1 

GLIL = im) 

with A = (L + J + 1)/2  and X = (1 - j)(2j +l). 
The FORTRAN IV subroutine NINE J which  evaluates  the 9- j coefficient  in  the  gen- 

eral case is presented  in  appendix D. The  coding has been  arranged so  as to  closely  re- 
semble  the  actual  equations.  The  subroutine is written as a function  subprogram, s o  
that a typical  call  might be 

SUM =SUM +ALPHA * NINEJ(L1,  S1, J1, L2,  S2,  52,  L, S ,  J) 

The  arguments  L1, . . . , J in the  calling  vector a re   t o  be supplied as floating point 
variables, so  that either  integer o r  half-integer  values  may  be  easily  handled. 

An entry  has  been  provided  for  obtaining  the 9- j  coefficient  in  the  special  case 
where s1 = s2 = 1/2. A typical  call  for  this  function  might be 

SUM =SUM +ALPHA  *QLSJ(Ll, J1, L2, 52, L, S ,  J) 

An entry has also  been  provided  for  obtaining  the  reduced  matrix  elements of the  spin- 
angle  tensor JLs J. A typical  call  for  this  function  might  be 6" 

SUM = S U M  +ALPHA * TLSJ(L1, J1, L2, 52, L, S,  J) 

CONCLUDING  REMARKS 

Techniques  for  computing  the  Clebsch-Gordan  coefficient,  the Ftacah coefficient,  the 
reduced  rotation  matrix  element,  and  the 9- j coefficient  have  been  presented.  The  dif- 
ficulties  associated  with  large  factorials in  the  numerators  and  denominators of t e rms  in 
the  series  were  avoided by introducing  the  logarithms  and by arranging  matters so that 
the first term in the  series had  the  value  unity.  Various  related  quantities were also  de- 
fined  and  methods  given  for  their  computation. 
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FORTRAN IV subroutines  based  on  these  techniques are presented  in  the  appendices. 
The  coding has been  designed  to  resemble  the  equations  in  the  text,  and  although  this 
leads to a slight  loss in  efficiency, it makes it easy  for  the  user  to  make  changes  to suit  
his  particular  application. 

Lewis Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  November  4, 1970, 
129-02. 
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APPENDIX A 

SUBROUTINE  FOR  EVALUATING  CLEBSCH-GORDON COEFFICIENT 

100 
200 
300 
400 
5 0 0  
6 00 
700 
R O O  
9 00 

1000 
1100 
1 2 9 0  
1300 
1 4 0 0  
1 5 0 0  
1 6 0 0  
1700 
1 8 0 0  
1900 
2'300 
2100 
2700 
23CO 
2 4 0 0  
7 5 0 0  
2hOO 
7700 
2 ROO 
7903 

3100 
3000 

3 2  00 
3300 
3400 
3 5 0 0  
3600  
3700 
3 8 0 0  
3900 
4000 
4101) 
4 2 0 0  
4300 
440O 
45CO 
4 6 0 0  
4 7 0 0  
4 8 0 0  
4900 
5 0 0 0  
5 1 0 0  
5 2 0 0  
5 3 0 0  
5 4 0 0  
5 5  00 
5 6 0 0  
5 700 

F U N C T I O N   C G ( J l r M l r J 2 r H Z r J r M )  
LOGICAL  FIRST/ .TRUE./ rOOO 
R E A L   J l r M l r J Z t M Z r J t M  
DOUBLE  PRECISION SUM 
COMMON / C G C O M / X ( 2 0 0 1  
DATA  ZER0/5.0E-6/  
O D D ( N I = M O D ( N r Z ) o € Q o l  

C THIS   SUBROUTINE  CALCULATES  THE  CLERSCH-GORDAN  COEFFIC IENT  <J l vM l rJZ rM2/J rM> 

MODE= 1 
P=M 
GO TO 1 
ENTRY  THREEJl  J l r J Z r   J , M l r M 2 r M )  
MODF=Z 
P=-M 

1 I F   ( F I R S T )  GO TO 6 

C B E G I N   C A L C U L A T I O N  

2 CG=O.O 
N = O . l + A B S ( M l + M 2 - P )  
I F  (N.NE.0)  RETURN 

N l = l . l + I J l + J Z - J )  
N Z = l . l + ( J Z + J - J l )  
N 3 = l . l + ( J + J l - J 2 )  
N 4 = 1 0 1 + ( J 1 - M 1 )  
N 5 = l . l + ( J Z + M 2 )  
N6=1.1+(  J l + M l )  
N 7 = 1 . 1 + ( J 2 - M 2 )  
N R = l . L + I J + M )  
N9=1.1+(  J-MI 
I F  f M I N 0 ( ~ 1 t N 2 r N 3 r ~ 4 r N 5 , N 6 r N 7 r N 8 t N 9 ) - L T - l )  RETURN 

FACTOR= I .  0 
I F  (MODE.EQ.2 .ANDoOOD(N1-N8) )  FACTOR=-FACTOR 

C TEST  FOR  SPFCIAL  VALUES 

I F  ( J l . L E . Z E R O . O R . J 2 . L E . Z E R O )  GO TO 5 
I F  I N l . E Q . l . A N D . ( N R . E Q . l o O R . N 9 . E Q . l ~ ~  GO TO 5 

C CONTINUE  CALCULATION 

J F  (MDDE.EQ.1) F A C T O R = S Q R T ( 2 . 0 * J + l . O ~ * F A C T O R  
N = N l + N 2 + N 3 - 1  
P = X ( N l l + X ( N 2 ) + X ( N 3 ) + X ( N 4 ) + X I N 5 ) + X ( N 5 ) + X ( N 6 ) + X ( N 7 ) + X ( N 8 ~ + X ( N 9 ) - X ( N )  
K  L=N 1 
K 2 = N 4  
Y3=N5 
K4=N4-N3 
K5=N5-N2 
N H A X = M I N O ( K l r K Z t K 3 t - l  
N M I N = M A X O ( K 4 t K S p O I  
N P l = N M I  N+L 
I F  (ODD(NY1N) I   FACTOR=-FACTOR 
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5800 
5 9 0 0  
60 00 
61 00 
6 2 0 0  
6 3 0 0  
6400 
65 09 
6 6  00 
6700 
6 8 0 0  
6900 
7000 
71 00 
7200 
73 00 
7400 
7 5 0 0  
7600 
7700 
7 8 0 0  
7900 
8 0 0 0  
8100 
8 2  00 
8 3 0 0  
A400 
A500 
8 6  00 
8 7 0 0  
A800 
8 9 0 0  
9000 
9100 
9 2  00 

TERM=FAGTOR 
SUM=TERH 
I F  (NMIN.EO.NNAX) GO TO 4 

DO 3 N=NP1 r NMAX 
D~E=(N-Kl)*(N-KZ)*(N-K3) 
T W O = ( N - K 4 ) * ( N - K 5 ) * N  
TERM=TERH*ONE/THO 

3 SUY=SUY+TERM 

4 N l = K l - N H I N  
N2=K2-NMIh( 
N3=K3-NMI N 
N 4 = N P l - K 4  
N 5 = N P l - K 5  
Q = X ( N L I + X ( N 2 ) + X ( N 3 ) + X ( N 4 ) + X ( N S ) + X ( N P l )  

CG=EXP(O-S*P-Q1*SUM 
I F  (ABS(CG)oLE.ZERfl)   CG=O*O 
RETURN 

C SPECIAL  CASES 

5 I F  (HODE*EO.Z) F A C T O R = F A C T O R / S O R T ~ 2 o O * J + L . O )  
CG=FACTOR 
RETURN 

C ARRAY X ( N ) = L O G ( G A M M A ( N ) )  

6 FIRST=.FALSE. 
DO 7 N = l r 2 0 0  
Q= N 

GO TO 7 
END 

7 X (  N)=ALGAMA (01  
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APPENDIX B 

100 
2c0 
3 QO 
400 
501-1 
600 
700 
8 QO 
900 

1000 

1 2 9 0  
13gn 
1400 
1 5 0 0  
160Q 
1700 
19CO 
1900  
7 0 0 Q  

7790  
2 3 0 0  
7 4 0 0  
2 5nO 
7 6 0 0  
2 700 
2RQ0 
2 9 0 0  
30n9 
3100 
3700 
33QQ 

3509 
36C.0 
3790 

7900 

41 00 
4 2  00 
4300 
4400 
4500 
4600 
4 7cc) 
4 8 0 0  
4900 
5000 
5 100 
5200 
5300 
5400 
5500 
5hn0 
5 7 0 0  
5800 

11 no 

Z I O O  

74n3 

3 ~ n n  

40 no 

SUBROUTINE FOR  EVALUATING RACAH COEFFICIENT 

C THIS  SUBROUTINE  CALCULATES  THE  RACAH  COEFFICIENT  WIA9BvCpD;EvF)  

MODE= 1 
GO T O  1 

MODE=2 
GO TO 1 
F'4TP.Y S I X J ( A v B v F v D v C v F )  
Y O o E  = 3  

FNTRY  UCOEF(Av0vCvDvEvF)  

1 I F  ( F I R S T )  GO TO 6 

C RFGIN  CALCULATION 

2 RACAH=O.O 
.J1=1.  1+(A+R-E)  
K l = l . I + ( B + E - A )  
L l = l . I + ( E + A - B )  
I F  ( M I N O I J l r K I , L l ) . L T . l )  RETURN 

J Z = I . l + ( A + C - F I  
CZ=l. l + ( C + F - A )  
L ? = I . l + ( F + A - C )  
I F   ( M I N O ( J 2 v K 2 v L Z ) - L T . I )  RETURN 

J3=1.1+(B+D-F)  
K3=1.1+(D+F-B)  
L ? = l . l + ( F + R - D )  
I F   ( M I N O ( J 3 r K 3 v L 3 ) . L T . I )  RETURN 

J 4 = 1 .   I + ( C + D - F  1 
K4=1.1+(D+E-C) 
L4=1.L+(E+C-D)  
I F  ( M l N O ( J 4 v K 4 r L 4 ) . L T . l )   R E T U R N  

FACTOR=1.0 
M 4 = J 4 + K 4 + L 4 - 1  
J 7 = J l + M 4 - 1  
I F  (MODE.Ea.3.AND.OODIJ71 1 FACTOR=-FACTOR 

C TEST  FOR  SPFCIAL  VALUES 

I F  ( A . G T . Z € R O . A N D . R . G T . Z E R O , A N D . C . G T . Z E R O . A N D . D . G ~ . Z E R O ~  GO TO 3 
I F  (MODE.NE.2) F A C T O R = 0 . 5 * F A C T O R / S Q R T ( ( E + O . 5 ) * ( F + O . 5 ) J  
RACAH=FACTOR 
RETIJRN 

C CONTINUF  CALCULATION 

3 P = X ( J l ) + X I J 2 1 + X ( J 3 ) + X ( J 4 ) + X ( K L ) + X o + X ( K 2 ~ + X ( K 3 ) + X ( K 4 ) + X ( L l ) + X ~ L Z ) + X ( L 3 ) + X ( L 4 ~  
M L = J l + K l + L 1 - 1  
M2=JZ+KZ+LZ-L 
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5 9 0 0  
6000 
61 00 
62  00 
h300 
6400 
6 5 0 C  
6600 
6 7 0 0  
b A 0 C  
6 9 0 0  
7 0 0 0  
71 00 
7 2 0 0  
7 3  00 
7 4 0 0  
7 5 0 0  
7 6 0 0  
7 7 0 0  

7 9 0 n  
R O C 9  
R 1 0 0  
R200  
A300 
8 4 0 0  
9 5 0 0  
8 6 0 0  
8700 
R R O O  
A Q O Q  
90n0 
91 00 
9 7 0 0  
93co 
9499 
95PO 
9 h 0 0  
97(1(? 
9 8 0 0  

7 a n 0  

M 3 = J 3 + K 3 + L 3 - 1  
P = P - X ( N l ) - X ( M Z ) - X ( H 3 ) ” 4 )  

J 5 = J   1 - L Z  
J h = J l - L 3  
N M A X = M I N O ( J ~ ~ J Z I J ~ ~ J ~ ) - ~  
N M I N = P A X O ( J 5 r J 6 * 0 1  
NPL=NMIN+L 
I F  ( O D D ( N Y I N ) )  FACTOR=-FACTOR 
TERM=FACTOR 
SUM=TFRY 
I F  (NYIN.EQ.NMAX) GO TO 5 

DO 4 N=NPl,NMAX 
~ N F = ( N - J l ) * ( N - J Z ) * I N - J 3 ) ~ ( N - J 4 )  
T W n = ( N - J S ) * ( Y - J 6 ) * ( N - J 7 ) * N  
TFPM=TERM*ONE/TWO 

4 SUM= SUM+TERY 

5 J l= J 1-NM I N  
JZ=J7-NMI  N 
J3=J3-NMTN 
J4=J4-NMIN 
J 5 = N P l - J 5  
J 6 = N P l - J 6  
J 7 z J 7 - N M I N  
~ ~ X ~ J I ~ + X ~ J 2 ~ + X ~ J 3 ) + X ~ J 4 ) + x ( J 5 ~ + X ~ J 5 ~ + X ~ J 6 ~ + X ~ N P l ~ - X ~ J 7 ~  

RACAH=EXP(0.5*P-OI*SUM 
IF ( P R ( ( R A C A H ) . L F . Z E R ~ )  RACAH=O.O 
R F  TURN 

C A R R A Y  X I N ) = L f l G ( G A Y P A ( N ) )  

h FIRST=.FALSE. 
DO 7 N = l r 2 O Q  
Q= N 

7 X ( N ) = A L G A Y A ( Q )  
GO T O  2 
FN 0 
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APPENDIX C 

100 
2 0 0  
309 
4 00 
5 @9 
600 
700 
R O O  
9 00 

1 q@0 
1100 
1200 
L 3 0 0  
1490 
1 5 0 0  
1 h0O 
1700 
1800 
1900 
7OnO 
2 1.00 
7 2 0 0  
73r)O 
7 4 c 9  
7 5 3 0  
7 6 C O  
7700 
7 8 0 0  
2 9 0 0  
3 0 0 0  
3 1  00 
3?On 
3 3  00 
3 4 9 0  
3 5 0 0  

7 7 0 0  
3890 
1900 
4000 
41 ’39 
4 7 0 0  
4 3  00 

4 5  00 
4h00 
4 7 0 0  
4RPO 
49 00 
5000 
51 PO 
5 2 0 0  
5 3 0 0  
5 4 0 3  
5 5 0 0  
56?0 
57’)o 

35no 

4 4 0 0  

SUBFUIUTINE FOR,  EVALUATING REDUCED ROTATION MATRIX ELEMENT 

F U N C T I O N   D J Y M I J * M l * M Z . T H E T A I  
LOGICAL  FIRST/ .TRUE./ , f lDD 
RFAL Jpb!l.M2 
DOtIRCE PRFC I S I ON SUM 
CCINMON /CGCOM/X( 2 0 0 )  
DbTA ZERO/5.CF-6/ 
DATA H A L F P 1 ~ P 1 ~ T W O P 1 ~ F O U R P 1 / 1 ~ 5 7 0 7 9 6 3 ~ 3 ~ 1 4 1 5 9 2 6 ~ 6 ~ 2 8 3 1 8 5 3 ~ 1 2 ~ 5 6 6 3 7 1 /  
O D D ( N ) = Y ~ ~ D ( N I Z ) . F Q . I  

C T H I S   S U B R O U T I N E   C A L C U L A T E S   T H F   R E D U C F D   R O T A T I O N   H 4 T R I X   < J ~ H l . / R ( T H E T A ) / J * M 2 >  

I F  ( F I R S T )  GU TU 10 

C R F G I N   C A L C U L A T I n N  

ANGLF=THETA 

I F  (ANGLF.GT.PO GO TO R 
IF ( A Y G L E . L T . - Z F K O )  GO Tn 7 

2 I F  IANGLE.LT.HACFP1) GO TO 3 
ANGLF=PI-ANGLE 
I F  (ODD(N3) 1 FACTOR=-FACTOR 
N4=?4 7 

3 N=Nl+N3-7  
N 3 = N l - N 4  

C TEST F O R  SPECIAL   VALUES 

I F  (ANGLE.GT.ZFRO1 GO T O  4 
DJMM=C).O 
I F  (N3.FQ.C)  DJMM=FACTOK 
RFTURN 

C CONTINUF  CALCULATION 

4 N M A X = M I N O ( N l * N Z ) - l  
N M I N = M A Y O ( N 3 r O l  
N P l = N M I N + L  
IF (Or?D(NYIN)  1 FACTOR=-FACTOR 

ANGLE=4NGLF/?.O 
I F  (hl.GT.9) F A C T O R = F A C T n 4 * ( C @ S ( A N G L E ) ) * * N  
T=T4N(  ANGLE)  
Y =  Z*NY IN -N  3 
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T F R M = F 4 C T U R  
SUM=TFKM 
I F  ( N Y I N . F Q . N M A X )  GO TO 6 
T=- T a t  2 

C PFOUCF  ANGLF 

7 ANGLE=-ANGLE 
I F  ( O D Q ( N l - N 4 1   F A C T O R = - F A C T O R  

8 A N G L F = 4 M n D ( A N G L E I F O U R P I )  
I F   ( A N G L E . l T . T W f l P 1 )  GO T O  9 
A N C L E = 4 N G L F - T W @ P I  
I F  ( V D O ( N l + N 3 1 )   F A C T O R = - F A C T O R  

9 I F   ( A N G L E . L T . P I )  Gn TO 2 
ANGLE=TWOPI -ANGLE 
I F  ( O D D (  N l + N 2  1 1 FACTOR=-FACTOR 
GO TO 2 

C A R R A Y   X ( N ) = L O G ( G A M M A l N ) )  
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APPENDIX D 

SUBROUTINE FOR EVALUATING NINEJ COEFFICIENT 

100 
200 
300 
400 
500 
600 
700 
A 00 
9 00 

1000 
1100 
1 2 0 0  
1300 
1400 
1 5 0 0  
1600 
1700 
1 ROO 
1900 
2 0 0 0  
2 1  00 
2 200 
2 3 0 0  
2 4 @ @  
2 500 
2600 
2 7 0 0  
2p .00  
2900 
3000 
3100 
3 2 0 0  
3300 
3 4 0 0  
3 5 0 0  
3600 
3700 
3 ROO 
3900 
4000 
41 00 
4 2 0 0  
4300 
4 4 0 0  
45@0 
4600 
4 700  
4 8 0 0  
4900 
5000 
5 100 

F U N C T I O N  N I N E J ( L ~ T S ~ V J ~ T L Z T S ~ ~ J ~ * L * S S J )  
L O G I C A L  ODD 

D O U B L E   P R E C I S I O N  SUM 
R F A L   L l r S 1 . J l 1 L 2 r S 2 r J Z r L r S r J  

O A T 4  Z E R O r S O T 4 P I / 5 ~ @ E - 6 r 3 r 5 4 4 9 0 7 7 /  
O D D ( N ) = M O D ( N t Z ) . E Q - l  

C T H I S   S U B R O U T I N E   C A L C U L A T E S  THE 9-J C O E F F I C I E N T  ( C l r S l r J l r L 2 r S 2 r J 2 r L 1 E I J )  
C I T  I S  ASSUMED  THAT ALL SELECTION  RULES  HAVE  BEEN  CHECKED PRIOR TO C A L L  

P=AMINl(Ll+JrL2+SrJ2+Sl) 
O = A M A X l ~ A R S ( L l - J l ~ A R S ( L 2 - S ~ r A ~ S ( J 2 - S 1 ) )  
M = 2 . 0 l * P  
N=2.01*Q 
M= M-N 
I F  (ODD(Ml.OR.H,LT.OI RETURN 

P= Q 

N = M / 2 + 1  
SUM=O. 0 

Q = Z . O * P + l . O  

00 1 M = l t N  
S U ~ = S U Y + Q ~ R A C A H ( L l . L 2 r J I S I L I P ) -  

1 * Q A C A H ( J ~ ~ C ~ ~ S ~ ~ S I S ~ T P ) -  
1 + R A C A H ( L L I S L ~ J I J Z I J ~ ~ P )  
P= P + t .  0 

1 O=Q+2.0 
N I N E J = S U M  
RETURN 

C THE F O L L O W I N G  ENTRY I S  FOR  THE  SPECIAL  CASE S L = S 2 = 1 / 2  
C I T  IS ASSUMED THAT ALL S E L E C T I O N   R U L E S  HAVE BEEN  CHECK 

ENTRY Q L S J ( Q L ~ T Q J ~ T Q L ~ T Q J ~ T Q L ~ Q S T O J )  

M = A B S ( O L - Q J ) + O . l  
N=QS+O. 1 
A=O.@ 
B=O.O 
c=o 00 
D=@.@ 
E = I Q L + Q J l / 2 . 0  

I F  IM.NE.01 GO T O  2 
A=RACAH(QLltO.StQJ*QJ2rQJlrQL2) 
I F  I N - E Q .   1 1  GO TO 2 
C=SQRT(4.0*QJ+2.0)  
GO TO 3 

2 0=4,Q*QJ+2.0 
€=E+O. 5 

ED PR . IOR TO CA 
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5690 
5 700  
5 8  09 
5 9 0 0  
6099 
61 nQ 
6 7  00 
63?0 
6400  
6 5  c)D 
hh 00 
6700 
hAC0 
6990  
7009 
71 no 
7 2 0 9  
7 3  e0 
7400 
75PO 
76 90 
7 7 q 0  
7 8 0 0  
79QO 
R C 0 0  
8100 
R 2@9 
R 300 
8 4 0 0  
8500 
R6n0 
R700 

C TME F P L L G N I N G   F N T R Y  I S  FOR  COMPUTATION OF 

C I T  I S  A’jSUMED T H A T   A L L   S E L E C T I O N  PULFS HAVE REEN CHECKED P R I O R  TO CALL 
C THE R E D U C E D  H A T K I X   E L E M F N T S  <Llrl/Z,Jl//TLSJ//L2~1/2,JZ> 

FNTRY T L S J ( T L l v T J l r T L 2 r T J 2 v T L ~ T S ~ T J )  

NIhEJ=CG(TJLv0.5rTJvO.OvTJ2vO.5j/SQT4PI 
N = T J + 3 .  1 
I F   ( O n D f N ) )   N I N E J = - N I N E J  
N = T S * ( T J - T L + Z . l  1 
I F   ( N - G T . 0 )  G O  TO 4 

c S=@ 

NINEJ=NIN€J*SQRT(Z.O*TJ+l.O) 
KF TURN 

c s= 1 

4 A = ( T L + T J + l . O ) / Z . O  
8 = I T L l - T J L ) * (  Z . O * T J 1 + 1 . 0 )  
C = ( T L ? - T J Z ) s ( 2 . O * T J Z + l . O ~  
GO TO ( 5 , 6 , 7 ) , N  

5 N I N E J = N I N E J * (   B + C - A I / S Q R T (  A )  
9F  TURN 

RFTURN 

R E  TURN 
END 

6 N I N F J = N I M E J ~ ( R - C 1 * S Q R T ( 2 ~ O * A / T J / ( T J + l ~ O ~ ~  

7 NINEJ=NINEJ*(B+C+A)/SQRT(A) 
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